Scientific Program

Conference Series Ltd invites all the participants across the globe to attend 4th International Conference on Sustainable Bioplastics Alicante, Spain.

Day 1 :

Keynote Forum

Jean-François GERARD

European Polymer Federation, France

Keynote: Electrospun fibers from biosourced and biodegradable polymers for biotechnological applications

Time : 10:00-10:30

OMICS International Bioplastics 2016 International Conference Keynote Speaker Jean-François GERARD photo

Prof. Jean-François GERARD got his PhD diploma in Polymer Science in 1985 from researches dedicated to syntheses of zwitterionic polyurethanes from sulfobetainic diols for self-emulsifying systems. He joined in 1986 CNRS as permanent scientist and his expertise deals with interfaces in polymer-based materials and nanostructured polymers. He is author of about 240 papers in international journals and 110 invited lectures in international conferences. He acts also as vice-president of the European Center for Nanostructured Polymers) and President of the European Polymer Federation.


rnElectrospinning process is one of the most promising routes for the design and development of smart textiles based on polymer nanofibers. From a proper selection of the electrospining process parameters and polymers, (multi)functional textiles could be proposed. In this lecture, we will show how biobased polymers, such as PLA-based, and biodegradable polymers, such as PBAT, can be used to prepare electrospun scaffolds. In the first part, electrospinning is applied to neat polylactic acid (PLA) and to PLA-based blends, i.e. PLA/polyethylene glycol-b-polylactic acid block copolymers and PLA/PEG homopolymer. Electrospun membranes exhibit fibers having diameters from 110 to 310 nm depending on the composition and large amounts of porosity (about 80% vol.) which are required for cell culture application. In vitro degradation, as well as the hydrophilicity of the electrospun scaffolds, can be finely tuned from material composition. Fluorescence microscopy shows that the PLA electrospun fibers based scaffolds are good candidates for the survival and proliferation of neural stem cells. Even if the introduction of hydrophilic segments, i.e. polyethylene glycol from PLA-b-PEG block copolymer, leads to the the same level of proliferation than PLA-based membranes, the PLA/PLA-b-PEG electrospun membranes exhibited the suitable hydrolytic degradation required for implantable scaffolds. The second part deals with the development of biodegradable PBAT electrospun membranes with potential applications in the field of smart textiles. As mentioned previously, the fiber morphology is strongly dependent on the tip-collector distance, concentration, and applied voltage. Smooth fibers and beads free membranes could be prepared and analyzed to establish morphology-properties relationships. PBAT membranes having the best thermal and mechanical properties were selected as host of a curli protein which is able to complex heavy metals. In fact, by electrospinning, porous membranes exhibiting a large surface-to-volume ratio could be proposed for chelation of pollutants such as nickel.rnrn

Keynote Forum

Gadi Rothenberg

University of Amsterdam, Netherlands

Keynote: Plantics: Plastics made from plants

Time : 10:30-11:00

OMICS International Bioplastics 2016 International Conference Keynote Speaker Gadi Rothenberg photo

Gadi Rothenberg has obtained his BSc in Chemistry in 1993, and PhD in Applied Chemistry from the Hebrew University of Jerusalem in Israel in 1999. He was a Marie Curie Fellow at the University of York (UK) and moved to the University of Amsterdam where he is now a Professor and Chair of Heterogeneous Catalysis and Sustainable Chemistry at the Van `t Hoff Institute for Molecular Sciences. He also teaches courses on catalysis, thermodynamics and scientific writing. He has published two books and over 160 papers in peer-reviewed journals. His textbook “Catalysis: Concepts & Green Applications” is a Wiley-VCH bestseller. He has also invented 15 patents, and co-founded the companies like Sorbisense A/S, Yellow Diesel BV and Plantics BV. His latest inventions are a new catalyst for cleaning cyanide from wastewater and a metal-free super-capacitor material.


How often is it that you invent something that can truly change people’s lives and make the world a better place? We’ve been working on catalyst discovery and development for bulk chemicals and sustainable energy for over a decade, and during those years we found quite a few nice things, but nothing truly spectacular. And then, five years ago, we discovered by accident a new type of biodegradable polymer made from 100% plant-based materials. It would be nice to say that this involved years of study and preparation, but in fact we were just very lucky. This new plastic is inherently non-toxic and non-hazardous. Excitingly, it is cheap enough to replace polyurethane and in some cases polypropylene and PET on a kilogram to kilogram basis (see Figure 1). It is now being manufactured on ton scale by a spin-off company, Plantics BV, which is situated at the Port of Amsterdam. During the scaling up and manufacturing we have found a host of new and exciting things. In the lecture, I will tell you how we discovered this plastic, and discuss the pros and cons of making chemicals and polymers from biomass. I will also show examples of this new type of plastics and share our stories of trying to bring a new material into the conservative industrial sectors of injection moulding, agro-products, building materials and oil drilling additives.


Keynote Forum

Matjaž Kunaver

National Institute of chemistry, Slovenia

Keynote: Biomass waste- A source of raw materials and nanocellulose

Time : 11:00-11:30

OMICS International Bioplastics 2016 International Conference Keynote Speaker Matjaž Kunaver photo

Matjaž Kunaver has done his MSc from the University of Leeds UK in 1991 and has received his PhD degree in 1998 at the University of Leeds, UK. He is a Senior Scientist Researcher at the National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology, Ljubljana, Slovenia and is an Assistant Professor at the University of Ljubljana and Polymer Technology College. His main fields of research are the utilization of biomass as a feedstock for polymer synthesis and production of nanocellulose. He has published more than 50 original scientific papers and 6 patents.


Biomass represents an immense and renewable source for the production of bio-fuels and valuable chemicals. Using liquefaction reaction, lignocellulosic components are depolymerized to low molecular mass compounds with high reactivity, high hydroxyl group content and can be used in many useful applications. We used liquefied biomass as a feedstock in polymer chemistry, such as synthesis of polyesters, polyurethane foams and adhesives. Herein, we also report on the optimized procedure for rapid preparation of nanocrystalline cellulose by liquefaction of its amorphous part of cellulose, lignin and hemicelluloses in ethylene glycol under acidic catalysis. Lignocellulosic biomass which was dispersed in glycol and methane sulfonic acid was used as a catalyst. The NCC was isolated as a residue, rinsed with 1,4-dioxane and centrifuged. The product was a NCC suspension in 1,4-dioxane or similar medium polar solvent. The crystallinity index was from 83% to 90% and the yield was more than 67% while using cotton as the starting material. Method for preparation of NCC by acid hydrolysis in ethylene glycol is a model procedure for NCC isolation from different natural cellulosic sources such as biomass with high yields and with high crystallinity index. A special attention was given to the utilization of the liquefied lignocellulosic materials as a new energy source with high heating value. The utilization of liquefied lignocellulosic materials can at least partially reduce the crude oil consumption, thus increasing the use of the renewable resources in large extent.

Break: Group photo & coffee Break 11:30-11:45 @ La Plaza